

Rethinking Preservation:
Novel Antimicrobial Peptides
as Natural Alternatives for
Upholding Product Integrity

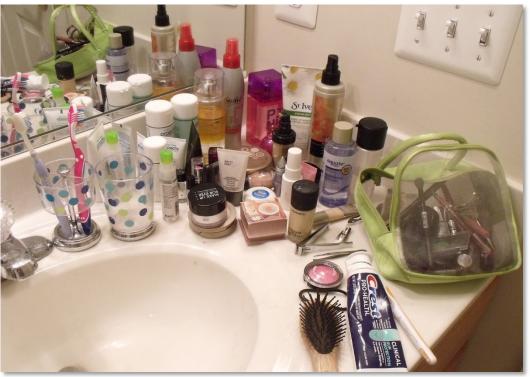
Every Formulator's Responsibility

- Ensure that the formulation, as purchased, is free from the microorganisms that could affect product quality and consumer health
- Ensure that microorganisms introduced during normal product use will not adversely affect the quality and safety of the formulation.
- All aqueous, or water-based, products need to have a proper preservation system to minimize the risk of microbial contamination and ensure product quality and stability.

Transforming The Face Of Preservation

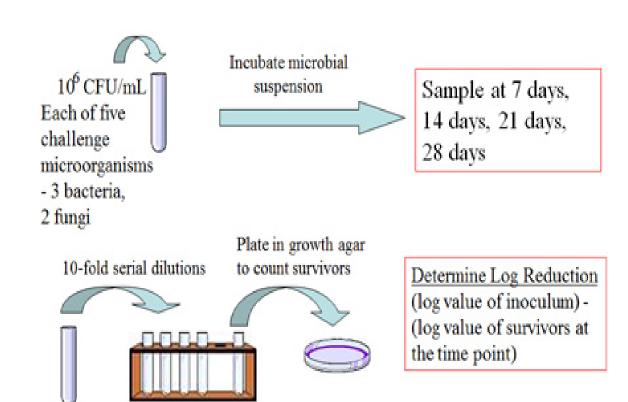
- Why proper preservation is crucial
- Signs your preservative system has failed
- Natural peptide technology as alternative solutions

- Bacteria, fungi, and mold can easily cause aqueous cosmetic and personal care products to become contaminated.
- The purpose of incorporating a preservative system is to prevent product damage caused by microorganisms as well as protect the product from unintended contamination by the consumer during use.


 As a consumer uses a product, it is inevitable that the product will be exposed to contamination at some point during use.

 Many personal care products are stored in the bathroom – humid and warm environment providing ideal conditions for microbial growth!

- Cosmetic preservation has been placed under the microscope
- Consumers misconception of preservative systems being unsafe
- Consumers are not aware of the safety testing and reviewing of preservative systems to ensure their safety of use
- Poor public understanding of risk vs. hazard


- Consumers are focusing on the extreme scenarios which cannot present themselves in personal care due to use levels being substantially lower than what is tied to any negative effect.
- What is not being considered is that the antimicrobials used in products are serving the purpose to remove the harmful microorganisms that may present themselves in a product, and that they are not causing damage to the consumer

- The best way to ensure that your formula is safe from dangerous microbial contamination is to include a proper preservative system.
- Most products on the market have proper preservation systems and the products are safe, but sometimes preservation systems fail.
- Unfortunately, if it fails, it can put your consumers at risk. As a
 formulator, you can prevent this! You just have to recognize signs
 that your preservation system has failed.

- Your Formulation Fails a Contamination Test
 - Every formulation should be tested to ensure they are not contaminated.
 - This should be done after each batch is made and before it goes out for sale.
- If your preservation system is not strong enough to prevent contamination, you're going to need to improve your system

- Your Formulation Fails a Preservative Efficacy Test
 - Preservative Efficacy Testing (PET) demonstrates whether your preservative system continues to work over time
 - Every formula you sell should be able to pass a PET!

- Your Formulation Changes Color
 - Color changes may signify preservative breakdown
- You should certainly test for contamination if you notice an unexpected color change

- Your Formulation Changes Odor
 - A foul odor may indicate your preservative system has failed
- You should certainly test for contamination if you notice an unexpected odor change

- Your Formulation Becomes Unexpectedly Thin Over Time
 - If microbes start proliferating in your formula, they are going to start feeding on the raw materials in the formulation.
 - One type of raw materials that microbes like are polysaccharides, such as those used in thickeners.
- You should certainly test for contamination if you notice an unexpected drop in viscosity

- Your Formulation has Unexplained Particles
 - Microbial contamination can visually appear as black or white specks in your formulas.
- You should certainly test for contamination if you notice specks or particles over time.

- Your Formulation Causes Irritation
 - Preservative systems are good at killing cells. That is what they do!
- If irritation occurs, your preservative system may have been used improperly in formulation.

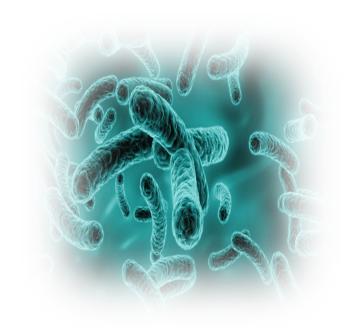
- Your Formulation Fails a Contamination Test
- Your Formulation Fails a Preservative Efficacy Test
- Your Formulation Changes Color
- Your Formulation Changes Odor
- Your Formulation Becomes Unexpectedly Thin Over Time
- Your Formulation has Unexplained Particles
- Your Formulation Causes Irritation
- The right preservative system for your formulation incorporated properly should not cause these problems!

How do you select the right preservative system?

- The booming consumer demand for natural products has slowly ousted conventional preservatives from product ingredient decks, leaving formulators to explore preservation alternatives.
- There are a number of effective, natural antimicrobial agents available to the cosmetic formulator today.
- Natural alternatives may provide multiple benefits such as moisturization and antioxidant properties.

Market Shift Towards Natural Solutions

- Options for formulators to explore have included alcohols, organic acids and salts, multifunctional additives, or natural flavors and fragrance
- These options may have limitations poor cost performance, potential for irritation, etc.
- Ideal alternative preservation systems should provide broad spectrum activity



Antimicrobial Peptide Technology

- The fermentation of lactic acid bacteria to encourage the production of antimicrobial peptides serves as a solution for alternative preservation
- Peptides function ubiquitously as cellular messengers
- Antimicrobial peptides are relatively short, protein-like compounds that are typically 30 to 60 amino acids in length
- Antimicrobial peptides derived from bacteria, they are typically produced as defense mechanisms to gain a competitive advantage against other microorganisms within their environment

Antimicrobial Peptide Technology – History of Use

- Lactic Acid Bacteria (LAB) group, which includes microorganisms such as Lactobacillus sp.,
 Enterococcus sp., and Leuconostoc sp., produces a variety of antimicrobial peptides
- Nisin produced from L. lactis
 - Commercialized in 1953
 - Considered GRAS for some applications
- Antimicrobial peptides are commonly used in the preservation of fermented food products

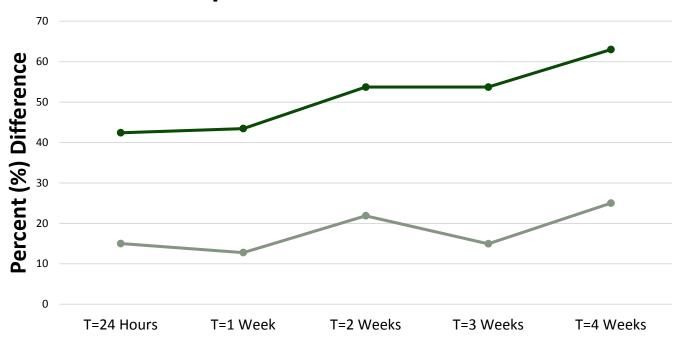
Antimicrobial Peptide Technology – Fermentation

 Fermented foods represent some of our earliest culinary endeavors

- Represented in every culture
- Is the ability of fermentation to preserve foods more than an issue of pH?
- Microorganisms used for fermentation release active antimicrobial peptides

Transforming the Face of Preservation

Mechanism of Action


- Lactic Acid Bacteria (LAB) family Lactobacillus acidophilus produces lactic acid
- Restricts the growth of microorganisms by acidifying their environment
- Fermentation of Lactobacillus creates bacteriocins (antimicrobial peptides)
- Bacteriocins provide broad spectrum activity and proven conditioning benefits

Modulated Activity

- Specific lytic agents added to the ferment filtrate to facilitate controlled cell lysis
- Ensures the release of the bacteriocins for maximized activity

Peptide Technology – Cosmetic Benefits

Comparative Moisturization

- Experimental vs. Untreated Control
- Experimental vs. Base Lotion

Figure 1: Moisturization Results for Lactobacillus Ferment.

Protocol

- Equipment: DermaLab Combo
- **Principle of measurement:** Conductance, single frequency
- **Subjects:** 10 (m/f)
- **Test area:** Volar forearms
- Concentration of active used: 2.0%
- Frequency of application: Twice Daily

Peptide Technology – Antimicrobial Efficacy

Minimum Inhibitory Concentration (MIC)

Organism	MIC (%)
E. coli	0.5
S. aureus	0.5
P. aeruginosa	0.5
C. albicans	0.5
A. Brasiliensis	0.5

Figure 2: MIC Results for Lactobacillus Ferment.

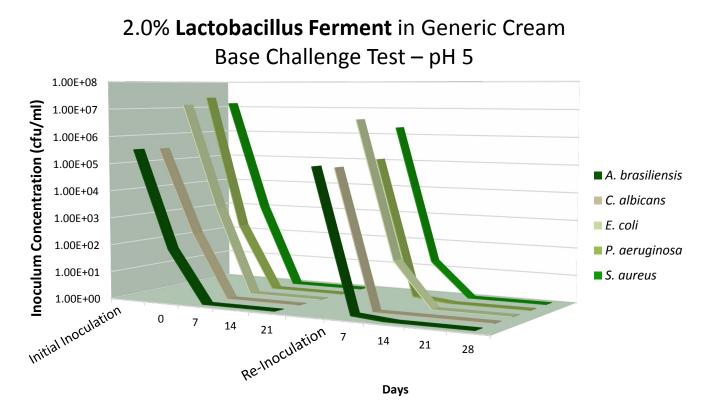
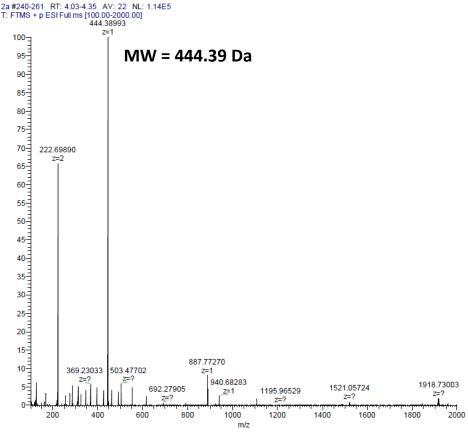


Figure 3: Challenge Test Results for Lactobacillus Ferment.

Lactobacillus Ferment – Additional Data

Efficacy Tests

- Moisturization Assay
- Transepidermal Water Loss (TEWL) Assay
- High Resolution Ultrasound Skin Imaging Assay
- Minimum Inhibition Concentration (MIC) Data
- IL-6 ELISA Assay
- Zone of Inhibition Data
- Challenge Test with 4.0% Lactobacillus Ferment pH 3
- Challenge Test with 4.0% Lactobacillus Ferment pH 5
- Challenge Test with 4.0% Lactobacillus Ferment pH 7
- Challenge Test with 2.0% Lactobacillus Ferment pH 3
- Challenge Test with 2.0% Lactobacillus Ferment pH 5
- Challenge Test with 2.0% Lactobacillus Ferment pH 7
- Time Kill Test


Safety Tests

- Safety Statement
- *in-vitro* Dermal and Ocular Irritation Tests
- Human Repeat Insult Patch Test
- Direct Peptide Reactivity Assay
- OECD 442D TG in-vitro Skin Sensitization
- Bacterial Reverse Mutation Test
- Phototoxicity Test
- OECD 202 Acute Daphnia Assay
- OECD 301B Ready Biodegradability Assay
- Allergen Statement

Quantification and Characterization

- Methods are currently available and widely used for the quantification of many synthetic preservative options, however there is a need for the development of analytical test methods for newer, natural solutions for preservation
- We wanted to be able to quantify the amount of antimicrobial agent present in Lactobacillus Ferment
- We had to characterize the bacteriocin (peptide) present and develop a quantitative assay for it
- There is a lot of interest in alternative preservative systems the use of Mass Spectroscopy (MS) and High Performance Liquid Chromatography (HPLC) provides a way to quantify natural antimicrobial bacteriocins in a finished formulation

- Lactobacillus Ferment was analyzed via Mass Spectroscopy (LC-MS) and High Performance Liquid Chromatography (HPLC) to investigate the nature of the bacteriocins present
- Bacteriocins present are tripeptides (lipo-amino acids) that typically have a C10-C14 chain length
- Molecular weight of the bacteriocins present in the Lactobacillus Ferment is typically within 400 – 450 Da
- Quantification of the bacteriocin value via HPLC provides a means for further standardization beyond MIC testing

Figure 4: Lactobacillus Ferment Lot 1 Full Scan at $T_r = 4.15 \text{ min}$

• The bacteriocins present are not synthetic peptides with one defined sequence. The current investigation has verified that the bacteriocin peptide sequence contains at least one lysine residue.

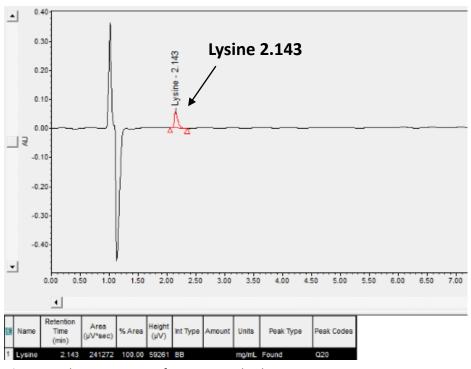


Figure 5: Chromatogram of Lysine Standard

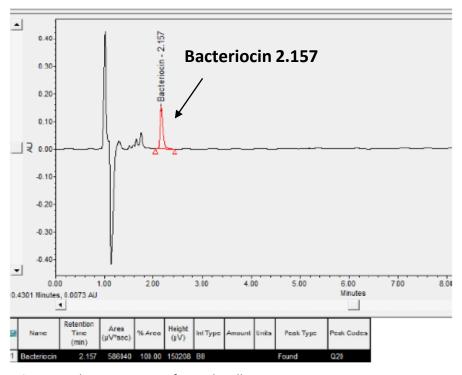


Figure 6: Chromatogram of Lactobacillus Ferment

Bacteriocin content standardization achieved through HPLC analysis

$$Bacteriocins Content (mg/ml) = \frac{\frac{A_{sam} \times W_{std} \times Sam_{dil}}{A_{std} \times Std_{dil}}}{Conversion factor}$$

$$Bacteriocins Content (\%) = \frac{Bacteriocin Content (mg/ml)}{10}$$

 $A_{\text{sam}} = Bacteriocins$ component peak area in sample chromatogram $W_{\text{std}} = Weight$ in mg of Lysine analytical standard in accordance with its potency $Sam_{\text{dll}} = 50 \text{ mL}$

Std₄₁ = 100 mL

A_{std} = Lysine peak area in standard chromatogram

Figure 7: Bacteriocin Content Calculation

Lactobacillus Ferment

Bacteriocins (HPLC)

5.00-10.00%

Figure 8: Bacteriocin Standardization of Lactobacillus Ferment

- Analysis enables manufacturers to quantitate and characterize alternative preservative systems
- The bacteriocins present along with MIC values provide a new, true characterization and functionality of antimicrobial products claiming broadspectrum activity as natural alternatives to synthetic preservation

Promoting Microbiome Balance with Peptide Technology

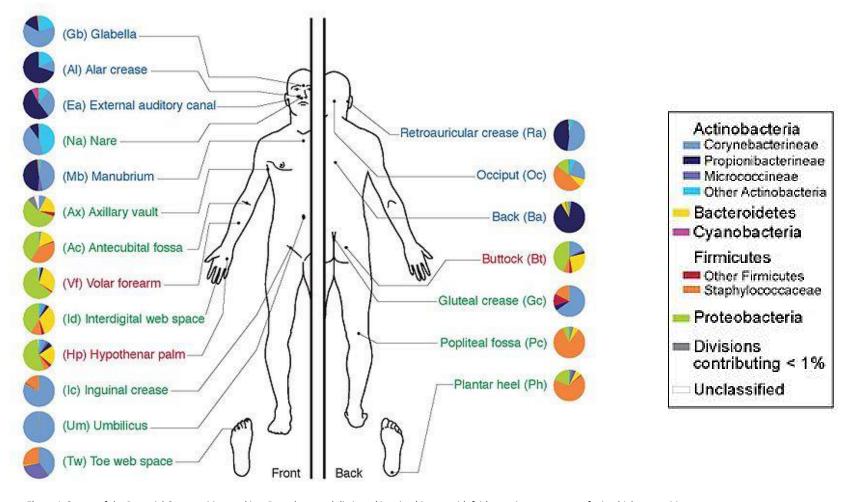


Figure 1. Survey of the Bacterial Communities on skin – Reveals several distinct skin microbiomes with fairly consistent patterns of microbial composition

E Grice et al, Topographical and temporal diversity of the human skin microbiome, Science 324(5931) 1190-1192 (2009)

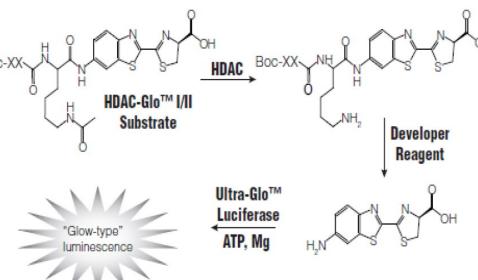
Importance of the Microbiome

- The perception of the skin as an ecosystem can advance our understanding of the skin and the skin microbiome
- Interdependence between the skin and the skin microbiome
- There is a delicate balance which can easily be disrupted
 - Leads to skin inflammatory events, stress, and skin aging
- What effect does the application of personal care products to our skin therefore have on our skin microbiome?
 - Maintaining homeostasis of the microbiome may prevent skin disorders

Preservation and the Skin Microbiome

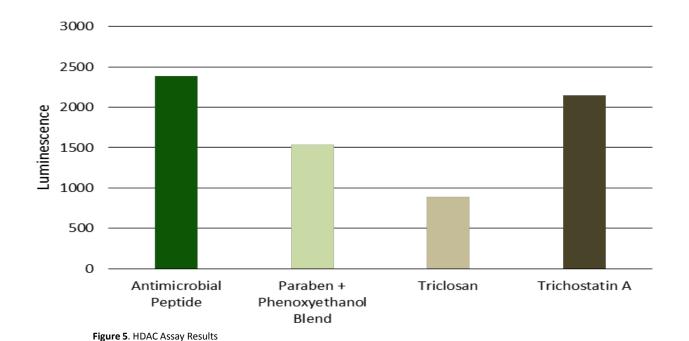
- Product preservation is crucial to prevent microbial contamination in a product during its foreseeable life in use by the end consumer
- The different microorganisms which have been found to grow in cosmetics are also resident commensal microorganisms found on our skin
 - Traditional preservatives may destroy pathogenic & commensal bacteria
- Protective microbiome should be considered
 - Could unintentionally alter the skin's natural defenses
- This principle can help guide appropriate use of potential topical probiotics
 - Promote the delicate balance of the microflora!

HDAC: Marker of Microflora Balance


- The selective activity of natural antimicrobials and traditional preservatives has been evaluated through the analysis of Histone Deacetylaces (HDAC)
- HDAC are a class of enzymes expressed in skin cells
 - HDAC maintains healthy skin by removing acetyl groups from histones, allowing histones to condense and organize DNA for easy replication
- HDAC serves as an innovative marker for microflora balance
 - When the enzymes function properly, the microbial population of healthy skin remains intact
 - Preserving skin's integrity and natural barrier function

HDAC: Marker of Microflora Balance

- HDAC3 is most prominently expressed in N-TERT human keratinocyte cells
- HDAC3 expression is essential to maintain healthy skin
 - Regulates the relationship between commensal bacteria and cell function
- HDAC expression within multiple tissue systems such as the digestive tract and the skin is an essential factor in maintaining organ health and function
- When HDAC is altered or reduced, the skin's commensal bacteria is no longer as effective against unwanted microbes
 - Leads to compromised immune system and reduced skin health


HDAC Assay

- Screen each product for its effect on HDAC activity and microflora balance
- Used to determine histone deacetylase activity in cell-based or biochemical formats, providing accurate and efficient inhibitor profiling
- Bioluminescence-based detection so the light output or luminescence correlates to the amount of HDAC activity
- Less HDAC inhibition = higher light output

HDAC Assay Results

- More HDAC inhibition yields a lower luminescence value
 - Denotes the most damaging antimicrobial
- Lactobacillus Ferment showed best HDAC activity

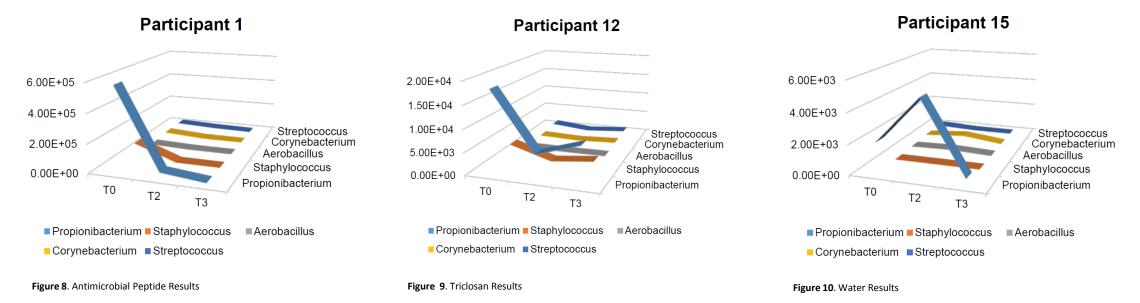
Product	Conc/Dilution	Luminescence
Lactobacillus Ferment	32	2388
Paraben + Phenoxyethanol Blend	32	1539
Triclosan	32	889.35
Trichostatin A	1.56	2132

Figure 6. HDAC Assay Results

Peptide Technology and the Skin's Microbial Population

- HDAC assay has concluded that some naturally derived antimicrobials are able to destroy pathogenic bacteria while maintaining commensal microflora on the skin
 - Supporting the balance of the microbiome and promoting overall skin health
- While this research suggested HDAC is channel of communication between microflora and the skin, the effects on the population of species of the microbiome was not analyzed
- 16S ribosomal RNA (rRNA) analysis has been used to investigate variations in the population of microbial species after the application of antimicrobial peptides

- In this study, a more conventional approach was taken to analyze the effects of the population of species in the skin microbiome
- The effect of the microbial population present on the skin with the application of an antimicrobial peptide was compared to water (negative control) and Triclosan (positive control)
- Microbiome population was determined by DNA extraction, 16S ribosomal RNA (rRNA) polymerase chain reaction (PCR) amplification and sequencing
- Every person has their own unique microbiome
 - Examining the nasolabial folds of each subject isolates the geographic location
 - Person-to-person variation is uncontrollable
 - Patterns in microbial change were evaluated individually


- 15 participants separated into blind treatment groups with each group having one of the following applied to the lateral nasal folds
 - 4.0% Antimicrobial Peptide
 - 1.0% Triclosan
 - Water
- Treatments were applied twice a day for a period of 2 weeks and new samples were taken from each participant to analyze population differences after product applications
- Samples were submitted to the Genomics Laboratory at the David H. Murdoch Research Institute (DHMRI) for DNA extraction, 16S rRNA PCR amplification and sequencing analysis

- DNA extracted from the samples shows a diversity population of
 - Staphylococcus sp., Corynebacterium sp., Propionibacterium sp., Streptococcus sp., Aerobacillus sp.
- As well a different populations known as transient and/or opportunistic invaders, such as
 - Escherichia sp, Pseudomonas sp., Vibrio sp., Clostridium sp., Neisseria sp.

Name	Taxonomy
HM267149.1.1374	D 0 Bacteria, D 1 Firmicutes, D 2 Bacilli, D 3 Bacillales, D 4 Staphylococcaceae, D 5 Staphylococcus, D 6 uncultured bacterium
JF144078.1.1370	D 0 Bacteria, D 1 Firmicutes, D 2 Bacilli, D 3 Bacillales, D 4 Staphylococcaceae, D 5 Staphylococcus, D 6 uncultured bacterium
DQ870740.1.1288	D 0 Bacteria, D 1 Firmicutes, D 2 Bacilli, D 3 Bacillales, D 4 Staphylococcaceae, D 5 Staphylococcus, D 6 Staphylococcus epidermidis
EF509212.1.1332	D 0 Bacteria, D 1 Firmicutes, D 2 Bacilli, D 3 Lactobacillales, D 4 Streptococcaceae, D 5 Streptococcus, D 6 uncultured bacterium
JF172400.1.1363	D 0 Bacteria, D 1 Proteobacteria, D 2 Gammaproteobacteria, D 3 Pasteurellales, D 4 Pasteurellaceae, D 5 Haemophilus, D 6 uncultured bacterium
FN908168.1.1419	D 0 Bacteria, D 1 Firmicutes, D 2 Bacilli, D 3 Lactobacillales, D 4 Streptococcaceae, D 5 Streptococcus, D 6 Streptococcus sp. 183-08
JF239161.1.1368	D 0 Bacteria, D 1 Firmicutes, D 2 Bacilli, D 3 Lactobacillales, D 4 Streptococcaceae, D 5 Streptococcus, D 6 uncultured bacterium
AJ276512.1.1499	D 0 Bacteria, D 1 Firmicutes, D 2 Bacilli, D 3 Lactobacillales, D 4 Aerococcaceae, D 5 Aerococcus, D 6 Aerococcus sanguinicola
JQ450584.1.1399	D 0 Bacteria, D 1 Firmicutes, D 2 Bacilli, D 3 Lactobacillales, D 4 Streptococcaceae, D 5 Streptococcus, D 6 uncultured bacterium
DQ805513.1.1407	D 0 Bacteria, D 1 Firmicutes, D 2 Erysipelotrichia, D 3 Erysipelotrichales, D 4 Erysipelotrichaceae, D 5 Incertae Sedis, D 6 uncultured bacterium
EF653422.1.1493	D 0 Bacteria, D 1 Firmicutes, D 2 Bacilli, D 3 Lactobacillales, D 4 Lactobacillaceae, D 5 Lactobacillus, D 6 uncultured bacterium
FM996743.1.1462	D 0 Bacteria, D 1 Actinobacteria, D 2 Actinobacteria, D 3 Actinomycetales, D 4 Actinomycetaceae, D 5 Actinomyces, D 6 uncultured bacterium
FJ557743.1.1389	D 0 Bacteria, D 1 Firmicutes, D 2 Clostridia, D 3 Clostridiales, D 4 Lachnospiraceae, D 5 Stomatobaculum, D 6 uncultured bacterium
FJ558013.1.1408	D 0 Bacteria, D 1 Bacteroidetes, D 2 Bacteroidia, D 3 Bacteroidales, D 4 Prevotellaceae, D 5 Prevotella, D 6 uncultured bacterium
GU940721.1.1398	D 0 Bacteria, D 1 Actinobacteria, D 2 Actinobacteria, D 3 Actinomycetales, D 4 Actinomycetaceae, D 5 Actinomyces, D 6 uncultured bacterium
FJ557924.1.1338	D 0 Bacteria, D 1 Actinobacteria, D 2 Actinobacteria, D 3 Corynebacteriales, D 4 Corynebacteriaceae, D 5 Corynebacterium, D 6 uncultured bacterium
IQ855619.1.1284	D 0 Bacteria, D 1 Actinobacteria, D 2 Actinobacteria, D 3 Corynebacteriales, D 4 Corynebacteriaceae, D 5 Corynebacterium, D 6 uncultured bacterium
GQ069781.1.1371	D 0 Bacteria, D 1 Firmicutes, D 2 Bacilli, D 3 Lactobacillales, D 4 Leuconostocaceae, D 5 Leuconostoc, D 6 uncultured bacterium
JF142155.1.1344	D 0 Bacteria, D 1 Actinobacteria, D 2 Actinobacteria, D 3 Corynebacteriales, D 4 Corynebacteriaceae, D 5 Corynebacterium, D 6 uncultured bacterium
IQ452545.1.1417	D 0 Bacteria, D 1 Actinobacteria, D 2 Actinobacteria, D 3 Corynebacteriales, D 4 Corynebacteriaceae, D 5 Corynebacterium, D 6 uncultured bacterium
AEQO01000237.30.1459	D 0 Bacteria, D 1 Bacteroidetes, D 2 Bacteroidia, D 3 Bacteroidales, D 4 Prevotellaceae, D 5 Prevotella, D 6 Prevotella salivae DSM 15606
HQ804831.1.1450	D 0 Bacteria, D 1 Actinobacteria, D 2 Actinobacteria, D 3 Micrococcales, D 4 Micrococcaeae, D 5 Rothia, D 6 uncultured organism
JN882102.1.1501	D 0 Bacteria, D 1 Actinobacteria, D 2 Actinobacteria, D 3 Micrococcales, D 4 Microbacteriaceae, D 5 Microbacterium, D 6 uncultured bacterium
FJ470489.1.1508	D 0 Bacteria, D 1 Firmicutes, D 2 Negativicutes, D 3 Selenomonadales, D 4 Veillonellaceae, D 5 Selenomonas, D 6 uncultured bacterium
EU762705.1.1383	D 0 Bacteria, D 1 Firmicutes, D 2 Negativicutes, D 3 Selenomonadales, D 4 Veillonellaceae, D 5 Dialister, D 6 uncultured bacterium
GQ061522.1.1348	D 0 Bacteria, D 1 Firmicutes, D 2 Clostridia, D 3 Clostridiales, D 4 Family XI, D 5 Anaerococcus, D 6 uncultured bacterium
GQ006276.1.1348	D 0 Bacteria, D 1 Firmicutes, D 2 Clostridia, D 3 Clostridiales, D 4 Family XI, D 5 Anaerococcus, D 6 uncultured bacterium
EU375190.1.1218	D 0 Bacteria, D 1 Proteobacteria, D 2 Alphaproteobacteria, D 3 Sphingomonadales, D 4 Erythrobacteraceae, D 5 uncultured, D 6 uncultured Porphyrobacter sp.
AY860251.1.1438	D 0 Bacteria, D 1 Proteobacteria, D 2 Betaproteobacteria, D 3 Burkholderiales, D 4 Burkholderiaceae, D 5 Cupriavidus, D 6 Cupriavidus taiwanensis
CP000507.436076.437612	D 0 Bacteria, D 1 Proteobacteria, D 2 Gammaproteobacteria, D 3 Alteromonadales, D 4 Shewanellaceae, D 5 Shewanella, D 6 Shewanella amazonensis SB2B
AB845250.1.1210	D 0 Bacteria, D 1 Proteobacteria, D 2 Gammaproteobacteria, D 3 Enterobacteriales, D 4 Enterobacteriaceae, D 5 Enterobacter, D 6 Enterobacter sp. BD6
KC337225.1.1448	D 0 Bacteria, D 1 Proteobacteria, D 2 Gammaproteobacteria, D 3 Oceanospirillales, D 4 Halomonadaceae, D 5 Halomonas, D 6 uncultured Halomonas sp.
JF224063.1.1380	D 0 Bacteria, D 1 Proteobacteria, D 2 Betaproteobacteria, D 3 Neisseriales, D 4 Neisseriaceae, D 5 uncultured, D 6 uncultured bacterium
IQ467996.1.1398	D 0 Bacteria, D 1 Proteobacteria, D 2 Betaproteobacteria, D 3 Neisseriales, D 4 Neisseriaceae, D 5 Kingella, D 6 uncultured bacterium
HQ681963.1.1488	D 0 Bacteria, D 1 Proteobacteria, D 2 Betaproteobacteria, D 3 Burkholderiales, D 4 Comamonadaceae, D 5 Comamonas, D 6 uncultured bacterium
GU272313.1.1510	D 0 Bacteria, D 1 Proteobacteria, D 2 Gammaproteobacteria, D 3 Xanthomonadales, D 4 Xanthomonadaceae, D 5 Stenotrophomonas, D 6 uncultured bacterium
DQ813307.1.1471	D 0 Bacteria, D 1 Proteobacteria, D 2 Gammaproteobacteria, D 3 Pseudomonadales, D 4 Pseudomonadaceae, D 5 Pseudomonas, D 6 Pseudomonas sp. IBUN MAR1
FM163487.1.1535	D 0 Bacteria, D 1 Proteobacteria, D 2 Gammaproteobacteria, D 3 Enterobacteriales, D 4 Enterobacteriaceae, D 5 Salmonella, D 6 Achromobacter xylosoxidans
JF830196.1.1513	D 0 Bacteria, D 1 Proteobacteria, D 2 Gammaproteobacteria, D 3 Pseudomonadales, D 4 Moraxellaceae, D 5 Acinetobacter, D 6 uncultured bacterium
DQ192213.1.1346	D 0 Bacteria, D 1 Proteobacteria, D 2 Gammaproteobacteria, D 3 Pseudomonadales, D 4 Moraxellaceae, D 5 Enhydrobacter, D 6 Moraxella sp. L70
FJ375496.1.1483	D 0 Bacteria, D 1 Proteobacteria, D 2 Betaproteobacteria, D 3 Burkholderiales, D 4 Oxalobacteraceae, D 5 Massilia, D 6 uncultured bacterium
IQ456596.1.1360	D 0 Bacteria, D 1 Fusobacteria, D 2 Fusobacteriia, D 3 Fusobacteriales, D 4 Fusobacteriaceae, D 5 Fusobacterium, D 6 uncultured bacterium

Figure 7. Timepoint 1 Phylogenetic Tree Taxonomy

- The antimicrobial peptide increased the beneficial bacteria in the participants' skin area studied, while decreasing the presence of *Propionibacterium* sp.
- By increasing the populations of beneficial bacteria and decreasing the population of
 Propionibacterium sp. this current study demonstrates the potential of natural antimicrobials to
 promote a balanced skin microbiome

Antimicrobial Peptides – Versatility in Formulation

- Unlike more complex proteins and enzymes, antimicrobial peptides are much less susceptible to temperature and pH extremes
- Temperatures well above 40°C are typically tolerated, as are the range of pH values commonly found in cosmetic products
- Antimicrobial peptides produced by bacterial fermentation typically impart neither color nor odor to the final formulation
- These characteristics of antimicrobial peptides provide the flexibility needed to be effective in a wide variety of cosmetic and personal care formulations

Rethinking Preservation - Conclusion

- Antimicrobial peptides produced through bacterial fermentation allow cosmetic chemists to approach formulating in a more holistic manner
- Instead of adding preservatives as a final thought to the formulation the entire process of formulating and production will have to be considered, choosing bases and actives specifically to help deter microbial growth
- The use of antimicrobial peptides produced by lactic acid bacteria serves as a solution for alternative preservation

Rethinking Preservation:
Novel Antimicrobial Peptides
as Natural Alternatives for
Upholding Product Integrity