

Benjamin Schwartz
Ontario SCC Education Day
September 18, 2018

Formulating for stability and long shelf life

Content

- Natural emollients
 - Properties, challenges and possibilities
- How to increase stability and keep functionality in natural formulations
- The do's and don'ts

Rising demand for natural derived emollients

- Creates challenges for formulators since consumers certainly do not want to
 - Compromise on aesthetic experience
 - visual and sensorial
 - Sacrifice desired functionality on skin
 - moisturising, softening and caring
 - Pay more for "less" (in terms of perceived quality)

How much oil are we actually talking about?

The use of natural oils in cosmetics

Applications with natural focus	% of oil typically used		
Face Oil	up to 100		
Body Oil	± 50		
Massage Oil	± 50		
Lipstick / lipbutter	30-50		
Hair oil treatment	±50		
Emulsion	10 to 20		

And what kind of oils?

Unsaturated oils are often used as the main natural oil!

Name	Sweet Almond Oil Prunus Amygdalus Dulcis Oil	Soybean Oil Glycine Soja Oil	Sunflower Oil Helianthus Annuus Seed Oil	HO Sunflower Oil Helianthus Annuus Hybrid Oil
Typical FAC (%):				
Palmitic - C16:0	7	10	5	5
Stearic - C18:0	3	4	4	4
Oleic - C18:1	69	23	25	80
Linoleic - C18:2	21	54	63	7
Linolenic - C18:3	1	8	1	1
OSI (110°C)	12	6	6	20

And what kind of oils?

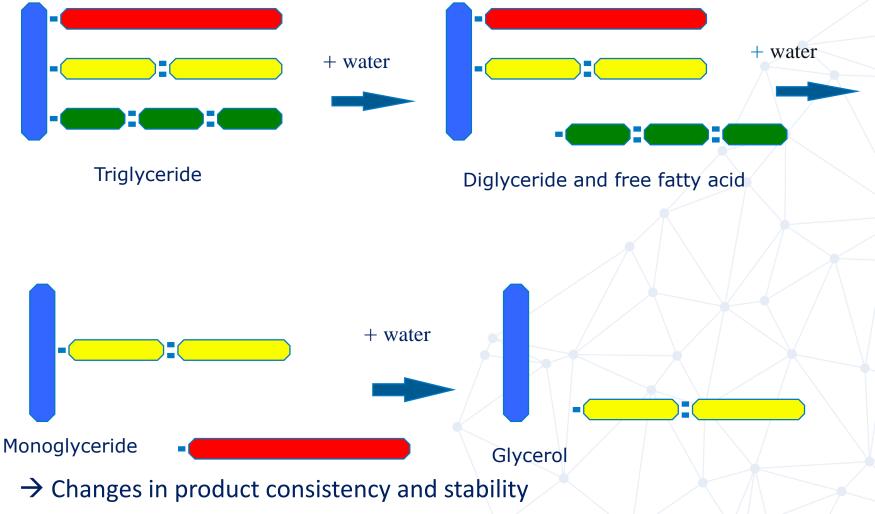
Unsaturated oils are often used as the main natural oil!

Name	Sweet Almond Oil Prunus Amygdalus Dulcis Oil	Soybean Oil Glycine Soja Oil	Sunflower Oil Helianthus Annuus Seed Oil	HO Sunflower Oil Helianthus Annuus Hybrid Oil
Typical FAC (%):				
Palmitic - C16:0	7	10	5	5
Stearic - C18:0	3	4	4	4
Oleic - C18:1	69	23	25	80
Linoleic - C18:2	21	54	63	7
Linolenic - C18:3	1	8		1
OSI (110°C)	12	6	6	20

And what kind of oils?

Unsaturated oils are often used as the main natural oil!

Name	Sweet Almond Oil Prunus Amygdalus Dulcis Oil	Soybean Oil Glycine Soja Oil	Sunflower Oil Helianthus Annuus Seed Oil	HO Sunflower Oil Helianthus Annuus Hybrid Oil
Typical FAC (%):				
Palmitic - C16:0	7	10	5	5
Stearic - C18:0	3	4	4	4
Oleic - C18:1	69	23	25	80
Linoleic - C18:2	21	54	63	7
Linolenic - C18:3	1	8		1
OSI (110°C)	12	6	(6)	20

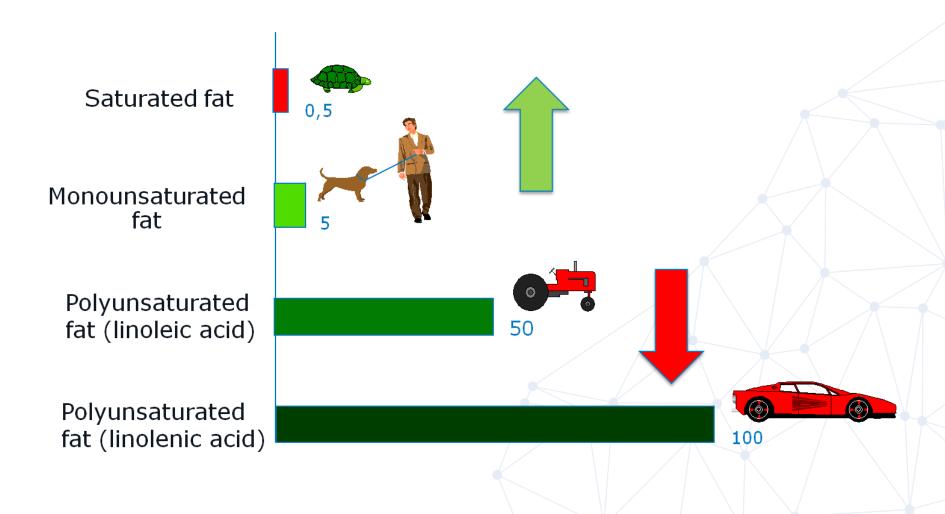

Formulating with emollients derived from plants creates challenges

- Oxidative and hydrolytic stability of the base emollients of high importance
 - Mineral oils are usually stable against oxidation and hydrolysis
 - With emollients derived from plants;
 - oxidative stability depends on content of polyunsaturated fatty acids and quality
 - hydrolytic stability depends on strength of ester bonds and quality

Breakdown of fats – Hydrolysis (presence of water)

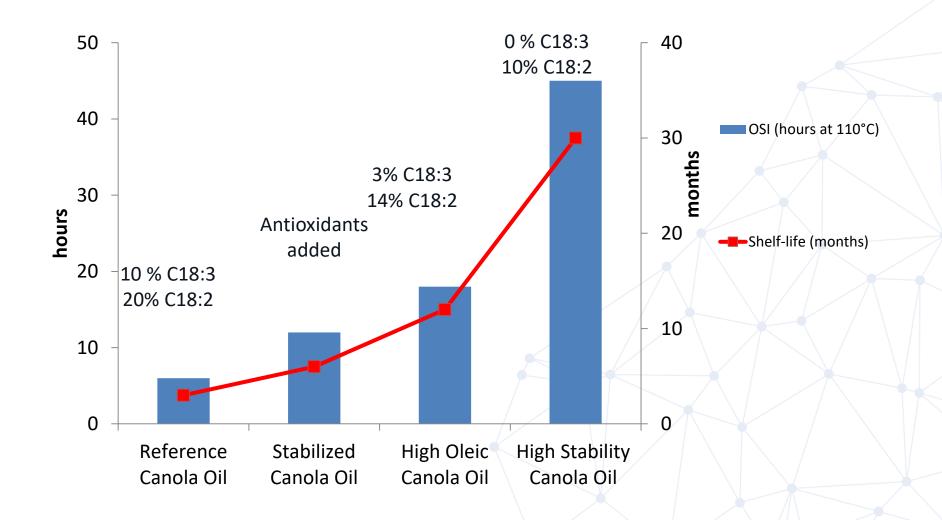
Challenge - pH

- Recommended pH range is given by the ester bond stability against hydrolysis
 - Valid for all esters and triglycerides
 - In general, stable in pH range 4 to 8
- Vegetable emollients are suitable for all purpose face care and body care applications
- Speciality applications like depilatory products (very low pH), hair straightening (very high pH) should not contain triglyceride or ester based emollients in direct base
- If allowed by application, the emollient can be added by the user (ie hair colouring)


Can hydrolysis be prevented?

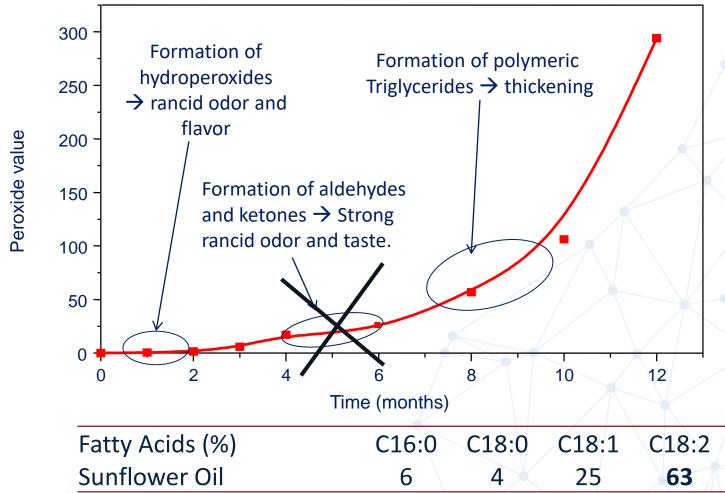
- During storage: avoid water and humidity
 - Keep containers closed and store cool and dry
- In the formulation: Avoid strong bases or acids
 - Keep the pH between 4 8
- Avoid lipase activity
 - Typically an effect of microbial contamination
- Short-chain triglycerides (coconut/palm kernel oils) are more sensitive than long-chain triglycerides (palm/rapeseed/shea butter)

Oxidation of unsaturated lipids -Decreasing Shelf Life Peroxide Value $+ O_2$ Original triglyceride Hydroperoxide Non volatile aldehyde Volatile aldehyde Oxidation Stability Index 12


Oxidation rate depends on fatty acid composition

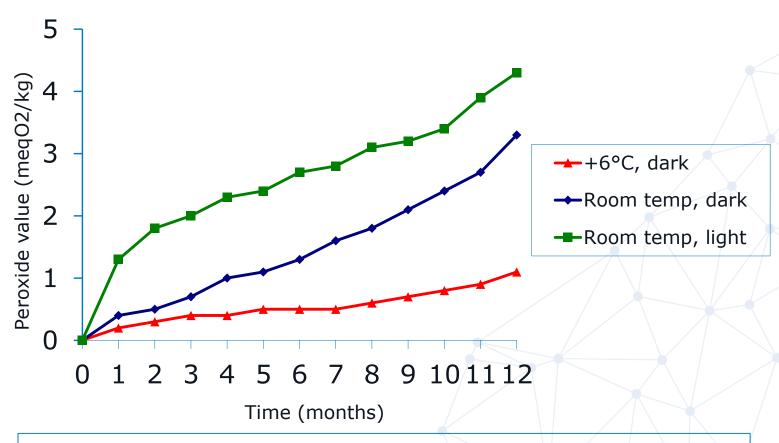
Oxidative stability is dependent on fatty acid composition and antioxidants

How is the shelf-life affected by oxidation?

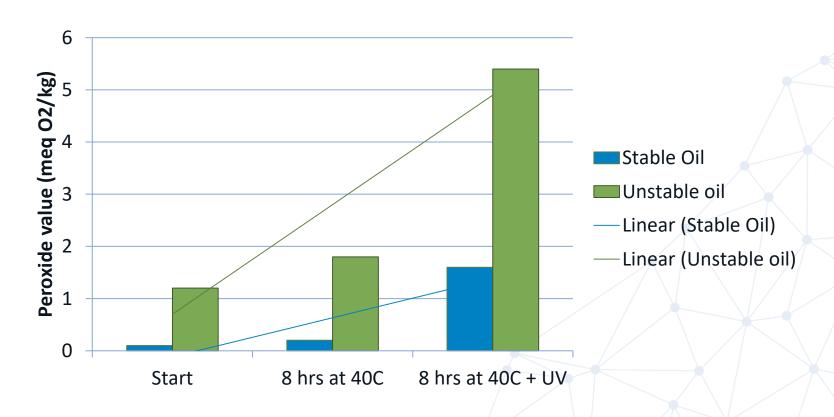


- Oxidation products can be smelly
 - Volatile, unsaturated aldehydes and hydrocarbons
 - Odor profile depends on oxidation pathway and starting composition (origin of raw material)
- Oxidation products are pro-oxidative
 - Autocatalysis, increases oxidation rate
- Oxidation depletes the content of Omega-3/Omega-6 fatty acids and tocopherols
 - Loss of skin functionality
- Oxidation products can be irritant and/or inflammatory
 - Free radicals and reactive oxygen species may cause inflammatory reactions and accelerate premature skin aging
 - Comedogenesis has been linked to oxidation products

What happens during storage? Oxidative breakdown process


Sunflower seed oil stored at 22°C; OSI (120°C) is 3 hours

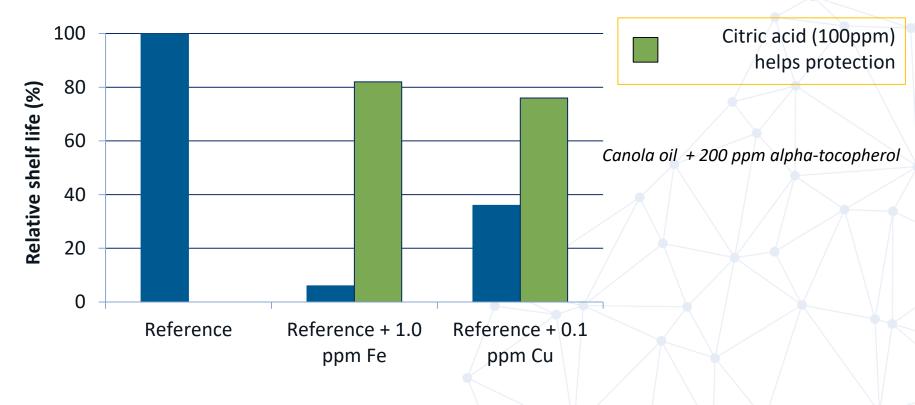
Why store cool and dark?


Canola oil stored in different conditions

Oxygen and UV-radiation triggers autoxidation of oils and is faster at higher temperature

AAK ACADEMY.

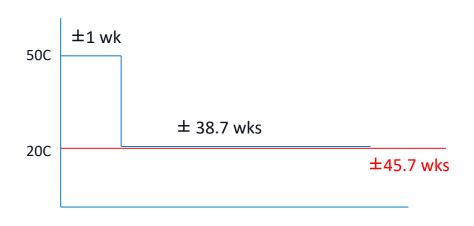
Influence of temperature and light



Important for many products like day creams / lotions, sun & after sun care products, for all ages and skin types!

Influence of metal ions

→ Metal ions induce oxidation and reduce shelf life



AAK Ingredients: <0.5 ppm Fe and <0.05 ppm Cu

Can I leave a vegetable oil for 1 week in a heating room at 50°C and what will happen to the shelf-life?

Liquid Shea			
(TC)	hours weeks		
110	15		
100	30		
90	60		
80	120		
70	240		
60	480		
50	960		
40	1920		
30	3840		
20	7680	45.7	

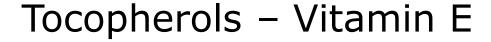
1 week at 50C is 168 hrs at 50C; 168/960 *100 = 17.5 %

leaves 82.5 % at 20C; 82.5/100 * 7680 hrs = 6336 hrs

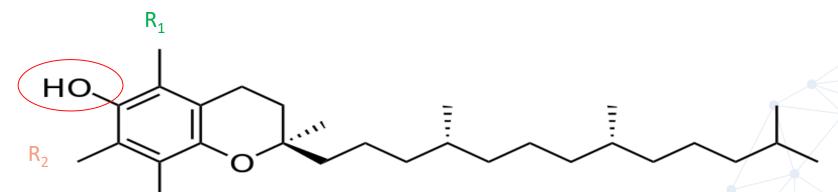
→ Changed total shelf-life to 6504 hrs = 38.7 weeks

Lost 15.4% of shelf-life

But what about an oil with lower stability? Can I leave a Sunflower Oil for 1 week in a heating room at 50°C? What will happen to the shelf-life?


1 week at 50C is 168 hrs at 50C 168/384 *100 = 43.8 %

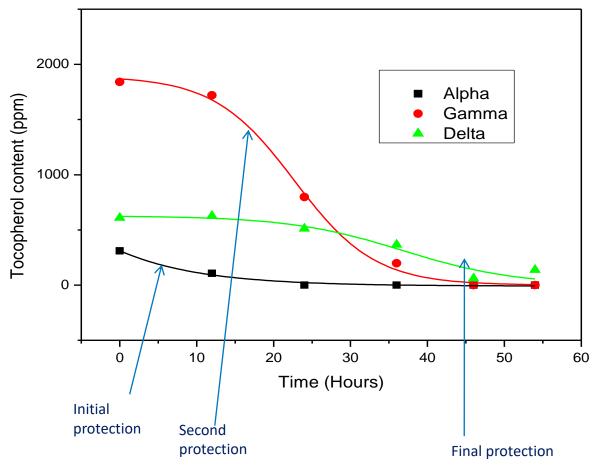
leaves 56.2% at 20C 56.2/100 * 3072 hrs = 1728 hrs


Changed total shelf-life to 1896 hrs = 11.3 weeks

Lost 38.2% of shelf-life

Sunflower oil			
(TC)	hours	weeks	
120	3		
110	6		
100	12		
90	24		
80	48		
70	96		
60	192		
50	384		
40	768		
30	1536		
20	3072	18.3	

 R_3


Form	R1	R2	R3
Alpha	Me	Me	Me
Beta	Me	Н	Me
Gamma	Н	Me	Me
Delta	Н	Н	Me

Potent natural antioxidant and free radical scavengers

- Natural vitamin E (d-alpha tocopherol) is a mix of 8 different molecules
- Synthetic (dl-alpha tocopherol) is "pure" alpha tocopherol
- Tocopherol acetate needs hydrolysis for activation

Mix of natural tocopherol isomers gives prolonged protection

Fractionated soybean oil analysed during an OSI experiment at 120°C

Which tocopherols are present in vegetable oils?

Tocopherol content is determined by plant origin and oil processing

	Alpha (mg/kg)	Gamma (mg/kg)	Delta (mg/kg)
Soybean oil	10-350	400-2400	150-950
Rapeseed / Canola oil	100-300	300-750	10-20
Maize oil	25-575	270-2470	25-75
Palm oil Tocotrienols	5-185 120-150	5-35 260-300	<70 <70
Sunflower oil	350-700	10-50	1-10

Steam distillation

Achieving stability and long shelf life

- Food grade oils are intended for consumption and not to be put on the skin and exposed to outdoor conditions
- Besides oxidation by-products, food grade refined oils may also contain other impurities that cause odour and colour, tolerable in food but not in cosmetics.
- Non-refined, cold pressed oils, may contain high content of breakdown products, peroxides and free radicals, proteins, pesticides, metals, coloured components and other environmental impurities influencing the shelf life and functionality.

Conclusion

- Use refined, deodorised and fresh oils and fats
 - Avoid mixing old and new batches
 - Make sure that the raw materials have low contaminant and metal content
 - Keep pH 4-8
- The fatty acid composition in the oil phase is important
 - Use high stability vegetable oils
 - Recommended: Linolenic acid content < 1% and/or Linoleic acid content < 10% in the formulation
 - Combine water-soluble, interfacial and oil soluble antioxidants
- Protect against UV, oxygen and high temperatures
 - Store dark, cold and dry before production
 - Avoid intense or prolonged heating during production
 - Use non-transparent packaging of final product

